University of Diyala
College of Engincering
Dep. Of Communication

Subject: Electrical . Fun
Year: 2011-2012
Time: 3 hour

Note:- Answer five questions only

Q1	$\mathrm{A} /$: Find the total resistance (R_{ab}) of the network of Fig. (1-A). $\mathrm{B} /$: Find v_{o}, and i_{o} in the circuit of Fig. (1-B)	20\%
Q2	For the circuit shown in Fig.(2), find the current in the (3) resistor using:- 1- Loop current method. 2- Nodal voltage method.	20\%
Q3	Find the load impedance in Fig. (3) for maximum power transfer to the load, and find the maximum power.	20\%
Q4	For the circuit shown in Fig.(4), find the current in the (4) resistor using:- 1- Thevenin's theorem. 2- Norton's theorem.	20\%
Q5	A /:For the network of Fig.(5-A), determine:- $\mathbf{Z}_{\mathrm{T}}, \mathbf{1}_{\mathrm{T}}, \mathbf{V}_{\mathbf{R}}, \mathbf{P}$, p.f B $/$:- Calculate the magnetic flux for the magnetic circuit shown in fig (5-B). If the current $\mathbf{I}=\mathbf{5 A}$, 	20\%
Q6	A /: For a series (R-L-C) circuit, the inductor is variable. The source voltage is $(\sqrt{2} 200 \sin 100 \pi t)$ volt. Maximum current obtained by varying the inductance is (0.314 A), and the voltage across the capacitor is $(300 \mathrm{~V})$. find the circuit elements ($\mathrm{R}-\mathrm{L}$ and C). B I: A coil having an inductance of $(50 \mathrm{mH})$ and a resistance of (10Ω) is connected in series with a $(\mathbf{2 5} \mu \mathrm{F})$ capacitor across a (200 V) ac supply. Calculate :- 1. Resonance frequency. 2- Current flowing at resonance. 3- The value of Q_{0} using different expressions.	20\%

Good Luck

Head of Dep.

Name: Lecture. Saib. T. Alwan

Lecturer:

Name: Ass. Lecture. Ahmed. S. Abdulla
$+$

Attached Figures and Notes

University of Diyala
College of Engineering
Dep. Of mechanical engineering Final Exam/ $2^{\text {nd }}$ Attempt

Class: $1^{\text {st }}$ stage
Subject: Electrical. Fun
Year: 2011-2012
Time: 3 hour

Note:-Answer five questions only

Q1	The resistivity of a ferric-chromium-aluminum alloy shown in FIG(1) is $51 \times 10^{-8} \Omega-$ m. A sheet of the material is 15 cm long, 6 cm wide and 0.014 cm thick. Determine resistance between (A) Opposite ends, and (B) Opposite sides.	20%
Q2	Calculate the equivalent resistance R_{ab} in the circuit in FIG (2).	20%
Q3	Use superposition theorem to find the current I through the 6 resistor in FIG (3).	$\mathbf{2 0 \%}$
Q4	For the bridge network in FIG (4), find i_{0} by using mesh analysis.	$\mathbf{2 0 \%}$
Q5	Find the Thévenin equivalent circuit for the network in the shaded area in FIG (5).	$\mathbf{2 0 \%}$
Q6	Use nodal analysis to find V_{x} in the circuit shown in the FIG (6).	$\mathbf{2 0 \%}$

Good Luck
Head of Dep. \qquad
Name: Raid Slim Hamood"

Name: Omar Ahmed Raheem

Attached Figures and Notes

University of Diyala College of Engineering Dep. of Computer \& Software Engineering Final Exam $/ 2^{\text {nd }}$ Attempt

Class: $1^{\text {st }}$ stage
Subject: Basics of Electrical Engineering
Year: 2011-2012
Time: 3 hour
Date: 3-9-2012

Q1	Explain Five of the Following: (1) Power. (2) Ohm's Law. (3) Open Circuit. (4) Thevenin's theorem. (5) The cycle in AC waveform. (6) Peak to Peak Value.	$\stackrel{10}{\text { Marks }}$
Q2	For the circuit shown in Figure (1), determine: 1. Compute I. 2. Find $\mathrm{I} 1, \mathrm{I} 2$ and I 3 . 3. Verify Kirchhoff's law by showing that $\mathrm{I}=\|1+\|2+\| 3$. 4. Find the Total Impendence of the circuit.	$\begin{gathered} 10 \\ \text { Marks } \end{gathered}$
Q3	Find the Current I in the Circuit Shown in Figure (2).	$\begin{gathered} 10 \\ \text { Marks } \end{gathered}$
Q4	For the network shown in Figure (3), find: 1. The currents IT, I1, I3 and I4. 2. Calculate Va and Vbc.	$\begin{gathered} 10 \\ \text { Marks } \end{gathered}$
Q5	For the network shown in Figure (4): determine the voltage $\mathrm{V} 1, \mathrm{~V} 2$ and the current I .	$\begin{gathered} 10 \\ \text { Marks } \end{gathered}$
Q6	For the circuit shown in Figure (5): 1. Write the nodal equations and solve for nodal voltages. 2. Determine the magnitude and polarity of the voltage across each resistor.	$\begin{gathered} 10 \\ \text { Marks } \end{gathered}$

Good Luck

Name: Dr. Saad A. Salman

Name:...MSc, Zeyad Assi Obaid

Attached Figures and Notes

Figure (1)

Figure (2)

Figure (3)

Figure (4)

Figure (5)

Diyala University College of Eng. Civil Eng. Dep.			
$1^{\text {st }}$ Class	$2^{\text {nd }}$ Attempt (2011-2012)	time $: 3 \mathrm{hrs}$	

Note :- Answer four Questions only (12.5 mark for each question)
Q1 :
Find the total resistance between points (a, b) in the circuit shown in figure (1).
Q2:
find the current passing through the resistor (10 ohms) using Thevenin's theorem in the circuit shown in figure (2) .

Qu:
Repeat Q2 using Norton's theorem.

Q4 :
Three impedances $Z 1=(3+j 4)$ ohms, $Z 2=(3-j 4)$ ohms , $Z 3=(6+j 8)$ ohms are connected in parallel to a voltage source ($\mathrm{V}=20 \sin 1000 \mathrm{t}$). Find all branch currents, total current, total impedance and draw the impedance diagram .

Q5:
If a voltage source $V=100 \sin \left(200 t+40^{\circ}\right)$ volt, is supplied with an electrical circuit, and the generated current is $\mathrm{i}=10 \sin \left(200 \mathrm{t}-5^{\circ}\right)$ Impers.
Find the impedance of this circuit and the components of this impedance

Figure (1).

Figure (2).

Electrical Engineering Fundamentak 1st Class
Time : 3 Hours
Date: / /2012

Note: Answer five questions only. 0., 仙分

Q1/ Use the superposition theorem to find i.

Q2/ Find the maximum power transferred to resistor R in the circuit shown.

Q3/ Using nodal analysis, find v_{0} and i_{0} in the circuit shown.

Q4/ (a) Find the form-factor of the wave form given in figure shown.

(b) For the figure shown, write the mesh equations and simplify it without finding the results.

Q5/ In a series-parallel circuit shown in figure, calculate : (a) current $\mathrm{I}_{\mathrm{A}}, \mathrm{I}_{\mathrm{B}}$ and I_{C}; (b) the power factor for each branch and the total power factor for the whole circuit.

Q6/ A current of 5 A flows through a non-inductive resistance in series with a choking coil when supplied at $250-\mathrm{V}, 50-\mathrm{Hz}$.
If the voltage across the resistance is 125 V and across the coil 200 V , calculate (a) impedance, reactance and resistance of the coil (b) the power absorbed by the coil and (c) the total power. Draw the vector diagram.

University of Diyala College of Engineering
Dep. Of pow \& ele mach..
Class:3ed stage
Subject: engineering analyses
Year: 2011-2012
Time:3 hour

Note:-Answer eight questions only

Q1	A-Find the Fourier transform of the spectrum represented in figure (1). B-Obtain the Fourier transform of the single sided exponential pulse $e^{-a t} \mathbf{u}(\mathbf{t})$.	12.5\%
Q2	A-Find the Z transform by residue theorem for $F(t)=e^{a t} \cos w t .$ B- by using power series method evaluate $z^{-1}\left[\frac{z^{2}}{z^{2}+3 z+2}\right]$ C-Determine $z^{-1}\left[\frac{\left(1-e^{-a}\right) z}{(z-1)\left(z-e^{-a}\right)}\right]$	12.5\%
Q3	A-find the Laplace -transform of the rectangular wave shown in figure (2). B-Determine the $\mathbb{f}(\mathrm{t})$ such that $\begin{aligned} f(t) & =0 & & 0 \leq t \leq 1 \\ & =0.5 & & 1 \leq t \leq 2 \\ & =1 & & 2 \leq t \leq 3 \\ & =0.5 & & 3 \leq t \leq 4 \end{aligned}$	12.5\%

Q4	Solve the following partial differential equation: $3 \frac{\partial u}{\partial x}+2 \frac{\partial u}{\partial y}=0 \quad, u(x, 0)=4 e^{-x}$	12.5\%
Q5	Apply the Laplace transforms to solve the following partial differential equation: $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$ $\mathbf{u}(\mathbf{x}, 0)=3 \sin 2 \pi, u(0, t)=0, u(1,0)=0$, where $0 \leq x \leq 1, u$ is bounded .	12.5\%
Q6	Show that $\int_{x}^{1} p_{n}(x) d x=\frac{1}{2 n+1}\left[p_{n-1}(x)-p_{n+1}(x)\right]$	12.5\%
Q7	Obtain the root of $x^{3}+x-1=0$ by fixed point method given that the root lies near 1 .	12.5\%
Q8	Solve the following differential equation by using improved Euler's method. $\frac{d y}{d x}=\mathbf{x}^{2}+\mathbf{y}$ for $\mathbf{x}=0.02$ by taking $h=0.01$, given that $y=\mid$ at $\mathbf{x}=0$	12.5\%
Q9	Evaluate $\int_{0}^{2 \pi} \frac{d \theta}{5+3 \sin \theta}$	12.5\%
Q10	Show that $\int_{0}^{2 \pi} \frac{\cos 3 \theta}{5-4 \cos \theta} d \theta=\frac{\pi}{12}$	12.5\%

$$
\text { Fig. } 2-
$$

-

Iniversity of Diyala.

- ollege of Engineering.

Electrical Power and Machines
Department.

2011-2012
Second Attempt

Q1: Using mesh analysis, find $\boldsymbol{i}_{\boldsymbol{o}}$ in the circuit of figure below.

Q2: Using Thevenin's theorem, find v_{o} in the circuit of figure below.

Q3: Using superposition principle find v_{o} in the circuit of figure below.

Q4: Determine the current \mathbf{I} in the network of figure below.

Q5: For the network of figure below.
a) Find the current \mathbf{I}_{1}.
b) Find the voltage $\mathbf{V}_{\mathbf{1}}$.
c) Find the average power
delivered to the network.

Q6: A) Prove that $\boldsymbol{I}_{r m s}=\boldsymbol{I} \sqrt{\frac{3}{2}}$ if $i=(I+I \sin \theta)$, assuming $\theta=(0-2 \pi)$.
B) Find the equivalent impedance of the circuit in figure below.
(5 Marks)

Q7: A series resonant circuit with an input voltage of $5 \mathrm{~V} \angle 0^{\circ}$, peak current of 0.5 A at resonance, bandwidth of 120 Hz and resonant frequency of 8400 Hz . Find the value of R, L and C and the cutoff frequencies.
(10 Marks)

Q8: For the magnetic circuit shown in figure below find the current \mathbf{I} in the coil needed to produce a flux of 0.45 mWb in the air gap. The silicon iron magnetic circuit has a uniform cross sectional area of $3 \mathrm{~cm}^{2}$ (assume $\mu_{r s}=500$).

