University of Diyala College of Engineering Dep. Of Communication Final Exam/2st Attempt

Class:1st stage Subject: Electrical . Fun Year: 2011-2012 Time:3 hour

	Note:- Answer five questions only	
Q1	A <i>I</i> : Find the total resistance (R_{ab}) of the network of Fig.(1-A). B <i>I</i> : Find v_{θ} and i_{θ} in the circuit of Fig. (1-B)	20%
Q2	For the circuit shown in Fig.(2), find the current in the (3 Ω) resistor using:- 1- Loop current method. 2- Nodal voltage method.	20%
Q3	Find the load impedance in Fig. (3) for maximum power transfer to the load, and find the maximum power.	20%
Q4	For the circuit shown in Fig.(4), find the current in the (4 Ω) resistor using:- 1- Thevenin's theorem. 2- Norton's theorem.	20%
Q5	A /:For the network of Fig.(5-A), determine:- Z_T , I_T , V_R , P, p.f B /:- Calculate the magnetic flux for the magnetic circuit shown in fig (5-B). If the current I=5A, N=60 t, A=2×10 ⁻⁴ m ² , ℓ_{abcd} = 0.3 m and μ_r =303 for the cast iron.	20%
Q6	 A <i>I</i>: For a series (R-L-C) circuit, the inductor is variable. The source voltage is (√2 200 sin 100 πt) volt. Maximum current obtained by varying the inductance is (0.314 A), and the voltage across the capacitor is (300V). find the circuit elements (R-L and C). B <i>I</i>: A coil having an inductance of (50 mH) and a resistance of (10 Ω) is connected in series with a (25 µF) capacitor across a (200 V) ac supply. Calculate :- Resonance frequency. Current flowing at resonance. The value of Q₀ using different expressions. 	20%

Good Luck

Head of Dep.

Lecturer:

Name: Lecture. Saib. T. Alwan

Name: Ass. Lecture. Ahmed. S. Abdulla

الكر فنيل مرشي حاجب ت مبكانيل العدرة الانفلاح

7 ノノン 二レビー Eliver 0 University of Diyala Class:1st stage College of Engineering Subject: Electrical. Fun Dep. Of mechanical engineering Year: 2011-2012 Final Exam/ 2nd Attempt Time: 3 hour Note:-Answer five questions only The resistivity of a ferric-chromium-aluminum alloy shown in **FIG(1)** is $51 \times 10^{-8} \Omega$ m. A sheet of the material is 15 cm long, 6 cm wide and 0.014 cm thick. Determine 20% Q1 resistance between (A) Opposite ends, and (B) Opposite sides. Calculate the equivalent resistance R_{ab} in the circuit in FIG (2). Q2 20% Use superposition theorem to find the current I through the 6Ω resistor in FIG (3). Q3 20% Q4 For the bridge network in **FIG (4)**, find i_{θ} by using mesh analysis. 20% Find the Thévenin equivalent circuit for the network in the shaded area in FIG (5). 20% Q5 Use nodal analysis to find V_x in the circuit shown in the FIG (6). Q6 20%

Head of Dep .:

Name: Zaid Salim Hamoody

Good Luck

Lecturer

Name: Omar Ahmed Raheem

.*

.

٠.

.

٤

· · ·

.

•.

	University of Diyala College of Engineering Dep. of Computer & Software Engineering Final Exam/2 nd Attempt Class: 1 st stage Subject: Basics of Electrical Engineerin Year: 2011-2012 Time: 3 hour Date: 3 – 9 - 2012	ng
	Note:-Answer All Questions	
Q1	 Explain Five of the Following: (1) Power. (2) Ohm's Law. (3) Open Circuit. (4) Thevenin's theorem. (5) The cycle in AC waveform. (6) Peak to Peak Value. 	10 Marks
Q2	 For the circuit shown in Figure (1), determine: 1. Compute I. 2. Find I1, I2 and I3. 3. Verify Kirchhoff's law by showing that I=I1+I2+I3. 4. Find the Total Impendence of the circuit. 	10 Marks
Q3	Find the Current I in the Circuit Shown in Figure (2).	10 Marks
Q4	 For the network shown in Figure (3), find: 1. The currents IT, I1, I3 and I4. 2. Calculate Va and Vbc. 	10 Marks
Q5	For the network shown in Figure (4): determine the voltage V1, V2 and the current I.	10 Marks
Q6	 For the circuit shown in Figure (5): 1. Write the nodal equations and solve for nodal voltages. 2. Determine the magnitude and polarity of the voltage across each resistor. 	10 Marks
I I	Head of Dep.:	

Diyala University College of Eng. Civil Eng. Dep. 2nd Attempt (2011-2012)

time: 3hrs

Note :- Answer four Questions only (12.5 mark for each question)

Q1 :

1st Class

Find the total resistance between points (a,b) in the circuit shown in figure (1).

Q2:

find the current passing through the resistor (10 ohms) using Thevenin's theorem in the circuit shown in figure (2).

Q3:

Repeat Q2 using Norton's theorem .

Q4 :

Three impedances Z1= (3+j4) ohms , Z2=(3 –j4) ohms , Z3= (6+j8) ohms are connected in parallel to a voltage source (V=20 sin 1000t). Find all branch currents , total current , total impedance and draw the impedance diagram .

Q5:

If a voltage source V= 100 sin (200t + 40°) volt, is supplied with an electrical circuit, and the generated current is $i = 10 \sin(200t - 5°)$ Ampers. Find the impedance of this circuit and the server server is $f = 10 \sin(200t - 5°)$ (100 m)

Find the impedance of this circuit and the components of this impedance

اعرى

Figure (1).

Figure (2).

Q4/(a) Find the form-factor of the wave form given in figure shown.

(b) For the figure shown, write the mesh equations and simplify it without finding the results.

Q5/ In a series-parallel circuit shown in figure, calculate : (a) current I_A , I_B and I_C ; (b) the power factor for each branch and the total power factor for the whole circuit.

Q6/A current of 5 A flows through a non-inductive resistance in series with a choking coil when supplied at 250-V, 50-Hz.

If the voltage across the resistance is 125 V and across the coil 200 V, calculate (a) impedance, reactance and resistance of the coil (b) the power absorbed by the coil and (c) the total power. Draw the vector diagram.

Examiner : Asst., Lecturer Wisam N. AL-Obaidi

University of Diyala College of Engineering Dep. Of pow & ele mach.. Final Exam/2st Attempt

Class:3ed stage Subject: engineering analyses Year: 2011-2012 Time:3 hour

Note:-Answer eight questions only

Q1	A-Find the Fourier transform of the spectrum represented in figure (1). B-Obtain the Fourier transform of the single sided exponential pulse $e^{-\alpha t}$ u (t).	12.5%
Q2	A-Find the Z transform by residue theorem for $F(t) = e^{at} \cos wt$. B- by using power series method evaluate $z^{-1} \left[\frac{z^2}{z^2 + 3z + 2} \right]$ C- Determine $z^{-1} \left[\frac{(1 - e^{-a})z}{(z - 1)(z - e^{-a})} \right]$	12.5%
Q3	A-find the Laplace -transform of the rectangular wave shown in figure (2). B-Determine the $\int f(t)$ such that $f(t) = 0$ $0 \le t \le 1$ $=0.5$ $1 \le t \le 2$ $=1$ $2 \le t \le 3$ $=0.5$ $3 \le t \le 4$	12.5%

Ś

	Solve the following partial differential equation:	
24	$3\frac{\partial u}{\partial x} + 2\frac{\partial u}{\partial y} = 0 , u(x, 0) = 4e^{-x}$	12.5%
	Apply the Laplace transforms to solve the following partial differential equation:	
25	$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} ,$	12.5%
	$u(x,0)=3\sin 2\pi$, $u(0,t)=0$, $u(1,0)=0$, where $0 \le x \le 1$, u is bounded.	
26	show that $\int_{x}^{1} p_{n}(x) dx = \frac{1}{2n+1} [p_{n-1}(x) - p_{n+1}(x)]$	12.5%
	Obtain the root of $x^3 + x - 1 = 0$ by fixed point method given that the	
27	root lies near 1.	12.5%
	Solve the following differential equation by using improved Euler's method.	
Q 8	$\frac{dy}{dx} = x^2 + y \text{ for } x=0.02 \text{ by taking } h=0.01 \text{ , given that } y = l \text{ at } x = 0$	12.5%
	Evaluate $\int_{0}^{2\pi} \frac{d\theta}{5+3\sin\theta}$	
Q9		12.5%
	Show that $\int_0^{2\pi} \frac{\cos 3\theta}{5 - 4\cos \theta} d\theta = \frac{\pi}{12}$	
210		12.5%

o verse and the second second

日本語を見る

Fig. - 2 -

.

·

24 V (

6Ω

4 A

5Ω

3 2

 4Ω

 12Ω

Q4: Determine the current I in the network of figure below.

(10 Marks)

38 V

Q5: For the network of figure below.

a) Find the current I_1 .b) Find the voltage V_1 .c) Find the average powerdelivered to the network.(10 Marks)

Q6: A) Prove that $I_{rms} = I \sqrt{\frac{3}{2}}$ if $i = (I + I\sin\theta)$, assuming $\theta = (0 - 2\pi)$. (5 Marks)

B) Find the equivalent impedance of the circuit in figure below. (5 Marks)

Q7: A series resonant circuit with an input voltage of 5 V $\angle 0^\circ$, peak current of 0.5 A at resonance, bandwidth of 120 Hz and resonant frequency of 8400 Hz. Find the value of *R*, *L* and *C* and the cutoff frequencies. (10 Marks)

Q8: For the magnetic circuit shown in figure below find the current **I** in the coil needed to produce a flux of 0.45 mWb in the air gap. The silicon iron magnetic circuit has a uniform cross sectional area of 3 cm² (assume $\mu_{rs} = 500$). (10 Marks)

